8,547 research outputs found

    Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient

    Get PDF
    We report on the anomalous Hall coefficient and longitudinal resistivity scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055). As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing temperature, we find n ~ 2 to be consistent with recent theories on the intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing temperatures far above the optimum, we note n > 3, similar behavior to certain inhomogeneous systems. This observation of atypical behavior agrees well with characteristic features attributable to spherical resonance from metallic inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure

    Interplay between carrier and impurity concentrations in annealed Ga1x_{1-x}Mnx_{x}As intrinsic anomalous Hall Effect

    Get PDF
    Investigating the scaling behavior of annealed Ga1x_{1-x}Mnx_{x}As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and extrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in TC_{C}. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.Comment: 4 pages, 5 figure

    Orbital ordering and enhanced magnetic frustration of strained BiMnO3 thin films

    Full text link
    Epitaxial thin films of multiferroic perovskite BiMnO3 were synthesized on SrTiO3 substrates, and orbital ordering and magnetic properties of the thin films were investigated. The ordering of the Mn^{3+} e_g orbitals at a wave vector (1/4 1/4 1/4) was detected by Mn K-edge resonant x-ray scattering. This peculiar orbital order inherently contains magnetic frustration. While bulk BiMnO3 is known to exhibit simple ferromagnetism, the frustration enhanced by in-plane compressive strains in the films brings about cluster-glass-like properties.Comment: 8 pages, 4 figures, accepted to Europhysics Letter

    Cluster Model of Decagonal Tilings

    Full text link
    A relaxed version of Gummelt's covering rules for the aperiodic decagon is considered, which produces certain random-tiling-type structures. These structures are precisely characterized, along with their relationships to various other random tiling ensembles. The relaxed covering rule has a natural realization in terms of a vertex cluster in the Penrose pentagon tiling. Using Monte Carlo simulations, it is shown that the structures obtained by maximizing the density of this cluster are the same as those produced by the corresponding covering rules. The entropy density of the covering ensemble is determined using the entropic sampling algorithm. If the model is extended by an additional coupling between neighboring clusters, perfectly ordered structures are obtained, like those produced by Gummelt's perfect covering rules.Comment: 10 pages, 20 figures, RevTeX; minor changes; to be published in Phys. Rev.

    Delay-induced Synchronization Phenomena in an Array of Globally Coupled Logistic Maps

    Get PDF
    We study the synchronization of a linear array of globally coupled identical logistic maps. We consider a time-delayed coupling that takes into account the finite velocity of propagation of the interactions. We find globally synchronized states in which the elements of the array evolve along a periodic orbit of the uncoupled map, while the spatial correlation along the array is such that an individual map sees all other maps in his present, current, state. For values of the nonlinear parameter such that the uncoupled maps are chaotic, time-delayed mutual coupling suppress the chaotic behavior by stabilizing a periodic orbit which is unstable for the uncoupled maps. The stability analysis of the synchronized state allows us to calculate the range of the coupling strength in which global synchronization can be obtained.Comment: 8 pages, 7 figures, changed content, added reference

    Carbon States in Carbon-Encapsulated Nickel Nanoparticles Studied by Means of X-Ray Absorption, Emission, and Photoelectron Spectroscopies

    Full text link
    Electronic structure of nickel nanoparticles encapsulated in carbon was characterized by photoelectron, X-ray absorption, and X-ray emission spectroscopies. Experimental spectra are compared with the density of states calculated in the frame of the density functional theory. The carbon shell of Ni nanoparticles has been found to be multilayer graphene with significant (about 6%) amount of Stone--Wales defects. Results of the experiments evidence protection of the metallic nanoparticles from the environmental degradation by providing a barrier against oxidation at least for two years. Exposure in air for 2 years leads to oxidation only of the carbon shell of Ni@C nanoparticles with coverage of functional groups.Comment: 16 pages, 6 figures, accepted in J. Phys. Chem.

    Fauriea, a new genus of the lecanoroid caloplacoid lichens (Teloschistaceae, lichen-forming ascomycetes)

    Get PDF
    The robust monophyletic branch having the highest level of bootstrap support in the phylogenetical tree of the Teloschistaceae based on combined data set of ITS, LSU nrDNA and 12S SSU mtDNA sequences, which does not belong to any other earlier proposed genera of the subfamily Caloplacoideae, is described as the new genus Fauriea S. Y. Kondr., L. Lőkös et J.-S. Hur, gen. nova for lecanoroid South Korean Caloplaca chujaensis, and newly described Eastern Chinese Fauriea orientochinensis. Descriptions of the new genus Fauriea and the species Fauriea orientochinensis, a comparison with closely related taxa and a discussion of their position are provided. New name Tayloriellina is proposed for the genus of the subfamily Brownlielloideae Tayloriella S. Y. Kondr., Kärnefelt, A. Thell, Elix et Hur (nom. illeg., non Tayloriella Kylin, Rhodomebaceae, Rhodophyta). New combinations for type species of the genera Fauriea and Tayloriellina (i.e.: Fauriea chujaensis (basionym: Caloplaca chujaensis S. Y. Kondr., L. Lőkös et J.-S. Hur), and Tayloriellina erythrosticta (basionym: Lecanora erythrosticta Taylor)) are proposed. Fauriea chejuensis and Biatora pseudosambuci are for the first time recorded for China

    On Classical Equivalence Between Noncritical and Einstein Gravity : The AdS/CFT Perspectives

    Full text link
    We find that noncritical gravity, a special class of higher derivative gravity, is classically equivalent to Einstein gravity at the full nonlinear level. We obtain the viscosity-to-entropy ratio and the second order transport coefficients of the dual fluid of noncritical gravity to all orders in the coupling of higher derivative terms. We also compute the holographic entanglement entropy in the dual CFT of noncritical gravity. All these results confirm the nonlinear equivalence between noncritical gravity and Einstein gravity at the classical level.Comment: 19 pages, no figure
    corecore